COMING UP!
Timestamp correction
Under normal circumstances the timestamp of each data sample is stamped on the time it was obtained from the sensor. The gives the most accurate measurement time, however some users preferred to have it stamped on the time the measurement was scheduled (at the given CRON intervals).
It is now possible to have the log data stamped on given cron intervals instead of the actual time of measurement. The setting can be activated by “cron_timestamp: True” under “omc048”.

Omc048:
 system_id: Loggins
 application: Zone
 file_log_level: info
 repl_log_level: info
 utc_time_offset_hours: +1
 utc_time_offset_minutes: +0
 sensor_data_print: True
 usb_mode: repl
 self_test: False
 cron_timestamp: True

Minor patches / fixes:
· Transmission of large files over remote would end up in a timeout reset. The inactivity timeout is now set to 10 minutes and is refreshed upon file down or uploads
· The generic_serial_output.py driver also transmitted unobtained data over the serial port for every parameter which was found in the table. Also non float values caused a error.
· A combination of averaging and serial out caused incorrect behavior by sending serial out data only on measurement intervals but not averaged intervals. Now data is only transmitted on averaged intervals as it would with normal D-record (normal logs)
OMC-048_FW_0.03B2271_H0003.bin#####
Remote server support
The remote support server is now online! Currently only available for Observator service department, but soon available for customers.
The config.txt can now be set-up to periodically (on start-up and ftp-interval) contact the remote server.
----FTP-Settings---- #
Ftp:
- id: data_ftp
 url: ftp.omc-data-online.com
 port: 21
 username: OMC-test
 password: omc-test
 transmit_interval: "5 * * * *"
 utc_time_sync: True

 webserver_remote_access: True
 webserver_url: blue2cast.com
 webserver_port: 5000
 webserver_password: 96e61649950d5c16d3cee4703da0956671f84c2998ec43ae487fa90d8e26f668

The settings above shall enable the datalogger to contact the server to provide notifications to the user while in operation. Also, the logger can be ‘awaited’ by the server so various tasks can be performed. Remote features include: Repl control, firmware update, editing the config.txt, syslog view while in operation, file upload and download e.t.c. In other words, the logger can fully be controlled via the remote server.
The server connects via SSL with additional handshake to give secure access. The password which is given in the config must be generated by Observator for safety reasons.

Recovery mode
In addition to the remote server support a ‘recovery mode’ is introduced to prevent the datalogger from becoming inaccessible due to scripting, missing drivers, or configurational errors. To use the recovery feature, the ‘recovery.txt’ file is added to the logger’s flash drive. This file is like the config.txt but it is set up to only access the remote server, so the logger can be ‘recovered’ and restored to a working condition.

----System----
Omc048:
 usb_mode: debug
 system_id: RECOVERY
----Modem-Settings----
Modem:
 id: onboard_modem
 port: modem
 sim_username:
 sim_password:
 apn: advancedinternet
 network_technology: GSM + LTE
----FTP-Settings----
Ftp:
- id: data_ftp
 webserver_remote_access: True
 webserver_url: blue2cast.com
 webserver_port: 5000
 webserver_password: 96e61649950d5c16d3cee4703da0956671f84c2998ec43ae487fa90d8e26f668
 transmit_interval: "0 * * * *"

Recovery mode to flash
Additionally, it is possible to have the recovery.txt file to be stored on the internal flash device. In case the original recovery.txt is lost or deleted the recovery mode shall fall back to the latest internally stored recovery.txt.
This process requires a functional recovery.txt on the loggers flash root (with correct password settings and sim provider settings). See the omc048 Webserver set-up guide on how to properly set up the device for recovery.

Generic serial out driver
Added a generic serial output driver, via “generic_serial_output_reference_tables.py”. This driver replaces the “OMC2900_reference_table_template.py” (omc2900 serial output driver). The driver can be set-up via the reference table to convert data items into an output string. Multiple reference tables can be created, and even a checksum can be added! Please see the description on how-to-use in the file “generic_serial_output_reference_tables.py”.

generic_serial_output:
- id: output_1
 port: serial1
 reference_table: OMC2900
 baudrate: 9600
 mode: RS232

Data averaging
All data logged by the logger can now be averaged over a given data_interval. The sensor will still sample data at the configured sample interval but will process and save the data to the log_file at the data_interval. The expected samples is the minimum amount of samples needed to set the “data-flag” to valid. If less than the minimum_required_samples are collected the “data-flag” will be set to invalid, but the data will still be processed.
#----Sensor-Settings---- #
Onboard:
- id: board_sensors0
 sample_interval: "0,20,40 * * * *"
 data_interval: "30 * * * *"
 minimum_required_samples: 30

Power monitor settings (*hardware #048000201 and upwards)
With the new hardware revision it’s possible to monitor the power supply. New settings are added so a hysteresis on the input supply can be configured. When the voltage of the supply drops under the hysteresis_low, the logger will close all log-files and go to sleep till the voltage rises above hysteresis_high. In case of a power failure the logger just closes the files and will restart when the sufficient power is reapplied.
----Power Monitor----
Input_power_monitor:
- id: power_mon
 hysteresis_high: 12
 hysteresis_low: 11.5
 sample_interval: "0,20,40 * * * *"

Minor patches / fixes:
· SDI-12 driver now checks if the configured reference table is too long when detecting the parameters, if the table is too long, the sensor will be removed from bus to prevent errors. The driver now gives a timeout when no data is collected.
· Self-test now checks the drivers on configured reference tables and shows if these sensors are connected per table.
· Remote_logger_api now checks if there’s a “NO CARRIER\r\n” in the data block when it runs through a timeout, so the logger can performs a reset when it lost connection with the server during a file upload from the server.
· Fix on the generic serial driver, the stop character only parsed a single character if multiple were given in the table.
· Fix on generic sdi driver, not properly separating in some cases.
· Rename on the “generic_serial_reference_tables.py”, it is now called: “generic_serial_input_reference_tables.py”
· Fix on the config parser to support ‘:’ in strings

OMC-048_FW_0.03B1900_H0003.bin#####
Generic SDI12 driver
The SDI12 protocol is now supported by the generic_sdi12.py driver. The driver is based on the concurrent commands, so all sensor measurements can be started at the same time/one after another.

----Sensor-Settings----
Generic_sdi12:
- id: gen0
 port: serial1
 baudrate: 1200
 bits: 7
 parity: 0
 reference_table: PT12,PTX
 sample_interval: "0 * * * *"
 wipe_interval: "0 0,10,20,30,40,50 * * *"
 supply_port: 1
 supply_port_always_on: True

The driver uses a reference table with the same layout as our other reference tables. Further explanation can be found in the sdi12_reference_table_template.py.

OMC2900
The OMC2900 driver now has a separate reference table called “OMC2900_reference_table_template.py”. The handling of the table hasn’t changed.

Iridium
The Iridium driver now has a separate reference table called “iridium_reference_table_template.py”. The handling of the table hasn’t changed.

Generic NMEA
The name of the configured sentences in the config is changed from “nmea_sentence” to “reference_table”. The name “generic_nmea_reference_table.py” changed to “nmea_reference_table.py”, the handling hasn’t changed.

----Sensor-Settings----
generic_nmea:
- id: nmea_gen0
 port: serial1
 reference_table: VTG,GGA,RMC
 sample_interval: "0,10,20,30,40,50 * * * *"
 response_timeout: 60

Generic serial
The name “generic_serial_reference_tables.py” changed to “generic_serial_reference_tables_template.py”, the handling hasn’t changed.

Onboard
On the new hardware (44613-03) it’s possible to log the power supply voltage. The parameter and data will be appended to the onboard sensor-data.

Hardware modifications applicable to PCB 44613-03
· The DC-supply-port-4 now delivers 5VDC voltage instead of a 12VDC.
· The analog output reference voltage now is 5VDC.
· The power supply voltage now can be monitored by the logger.
· The USB-supply voltage now can be monitored by the logger.

Minor patches / fixes:
· Driver wasn’t able to send via RS485 caused by an micropython update. Fixed by switching back to previous send function.
· Fix on removing items with log_parameters, the cellular data can now be selected by user.
· The generic serial driver now accepts strings of more than one character to be used as a start character.
· On request the onboard sensor measurements now contain Int. in the parameter name so they can be easily distinguished from external sensors.

OMC-048_FW_0.01B1598_H0002.bin#####
Minor patches / fixes:
· ‘Log_parameters’ was not excluded which caused an exception as it was interpreted as a serial driver.
· The self-test files and config files created with the slf-test routine are now renamed because of issues with OMC DOL.
OMC-045_system_id_serialnr_YYMMDD_HHMMSS-config.txt
OMC-045_system_id_serialnr_YYMMDD_HHMMSS-test.txt
· The pyb.uart_repl() can now be set to a serial port class as well as a uart class.

OMC-048_FW_0.01B1595_H0002.bin#####
Config.txt reposition to flash
From now on the config.txt needs to be placed on the flash of the microcontroller. If the flash on the OMC-048 already is defined, the mass-storage folder that presents itself on usb connection will be called “PYBFLASH”. The “PYBFLASH” folder could contain files, such as: readme, main.py, boot.py etc. All the files on the PYBFLASH can be removed and the config.txt should be placed on the root of the flash device. In case of a more recent logger the flash will be called “OMC048FLASH”.

USB mode adaptions
The config gives you an option in the system settings to switch between two different USB-modes, called the “storage” and “repl” -mode. The config file is now stored on the internal flash of the microcontroller, so regardless of the mode, it will always be possible to make changes to the config.txt file. The third mode which can be used is the “debug” mode. The debug-mode is not recommended for normal operation, cause of the possibility of files getting corrupted.
“storage” mode
When configured in storage-mode the OMC-048 will stop its routine when the USB-cable is plugged in. With the USB-cable connected it is possible to copy/transfer the files from the logger to the host and access the files. When the USB-cable is removed the logger will restart its application as defined by the configuration. Be aware it is not possible to start the logger application with USB connected, when in storage-mode.
“repl” mode
When configured in repl-mode the OMC-048 will continue its routine when a USB-cable is plugged in. It is possible to open a terminal emulator to start/stop/watch the (real-time) routine of the OMC-048. When closing the terminal window or disconnecting the USB, the logger will continue its routine without restarting the application. In case the logger was halted via the REPL (Ctrl-c) and the USB cable was removed, the application is restarted automatically. Be aware that there’s no possibility to reach the data- and logfiles in repl-mode.
“debug” mode
When configured in debug-mode the OMC-048 will give access to the mass-storage and can be started/stopped/watched via a terminal emulator with the REPL, as long as the USB-cable is plugged. Be aware the files can become corrupted, cause the SD card access is now shared between the host device and the logger application.
The text-box below shows an example of a config with the usb_mode setting included.[bookmark: _Hlk74214950][bookmark: _Hlk74214951]# ----System---- #
Omc048:
 usb_mode: storage
 system_id: OMC048_Tst
 application: example
 file_log_level: info
 repl_log_level: info
 utc_time_offset_hours: +1
 utc_time_offset_minutes: 0
 sensor_data_print: True

The usb_mode is a required setting! The application cannot start unless this setting is defined in the config.txt!
USB wake removed from configuration
This functionality is now included in the USB-mode setting. There is no need and possibility to do this manually anymore. The usb connection is checked every 10 seconds so it might take some time for the omc048 device to appear on screen.Usb_wake:
- id: usb_wakeup
 wake_interval: "0,10,20,30,40,50 * * * *"

Self-test on startup
The self_test adds the possibility to check if all sensors configured in config.txt are connected and can send their sensor data to the OMC-048. If FTP is configured the self_test driver will test its connection by transmitting the config.txt. If all parameters of all configured sensors are collected and the FTP-task (if configured) passed, the driver let the user know the self_test passed by printing it in the terminal emulator and transmit the self-test results via FTP to the configured server.# ----System---- #
Omc048:
 usb_mode: MODE
 system_id: OMC048_Tst
 application: example
 file_log_level: info
 repl_log_level: info
 utc_time_offset_hours: +1
 utc_time_offset_minutes: 0
 sensor_data_print: True
 self_test: True

The self_test setting is enabled by default!

The files are transmitted to the same ftp adres as the log/data files.
The config file is named: OMC-045_system_id_serialnr_YYMMDD_HHMMSS_config.txt
This is an exact copy of the original config.txt on the data loggers flash storage.

The self-test file is named: OMC-045_system_id_serialnr_YYMMDD_HHMMSS_test.txt
The self-test files are stored in the data/self-test folder on the SD storage of the data logger.

Eureka Manta driver
The manta protocol is supported via the manta driver. The wipe interval needs to be set on the same occurrence of a data sample or it shall be delayed until the next sample interval cron.manta:
- id: MAN1
 port: serial1
 sample_interval: "0 * * * *"
 wipe_interval: "0 0,10,20,30,40,50 * * *"
 supply_port: 1
 baudrate: 19200
 supply_port_always_on: True

Nortek Aquadopp driver
The Aquadopp binary output is supported via the Aquadopp driver. Make sure you set the response timeout a bit longer than the profiling time of the Aquadopp.
Generic NMEA driver
There now is a generic NMEA driver, which is capable of decoding any NMEA sentence, as long as the sentence is defined in “generic_nmea_reference_tables.py”. Specific instructions how a NMEA-sentence is added can be found in the “generic_nmea_reference_tables.py” file as well. It’s possible to decode multiple NMEA-sentences by defining the “to be decoded” sentences in the “nmea_sentence:” setting. Be aware if one of multiple sentences is not recognized or decoded, the driver will give a sensor timeout. Make sure there is no whitespace between the sentences.# ----Sensor-Settings---- #
nortek_cp:
- id: aqdp1
 port: 3
 baudrate: 19200
 sample_interval: "15 0,30 * * *"
 response_timeout: 900

----Sensor-Settings----
generic_nmea:
- id: gn1
 port: 3
 baudrate: 9600
 sample_interval: "0 * * * *"
 response_timeout: 5
 supply_port: 2
 supply_port_always_on: True
 nmea_sentence: RMC,GGA

Iridium timeout handling
The iridium driver can now be altered to add sensor data as blank fields on timeout occurrences. If the setting is disabled (default) no data shall be appended to the iridium message.# ----Iridium-Settings---- #
Iridium:
- id: data_iridium
system_id: IUQ
transmit_interval: "55 0,15,30,45 * * *"
add_timeout_field: True

Cellular diagnostics
Via the FTP settings it is now possible to add cellular diagnostics data to the log. The cellular diagnostics consist of signal strength, provider, roaming and network technology. If enabled the data is appended to the log as it would with normal sensor data according to the transmit interval cron given to the FTP driver. Cellular diagnostics is disabled by default.# ----FTP-Settings---- #
Ftp:
- id: data_ftp
 url: ftp.omc-data-online.com
 port: 21
 username: OMC-test
 password: omc-test
 transmit_interval: "20 * * * *"
 utc_time_sync: True
 utc_time_server: nl.pool.ntp.org
 utc_time_server_port: 123
 cellular_diagnostics: True

Minor patches / fixes:
· Improved the use of memory allocation in various functions
· Serial drivers can now be added to the modules folder without the need for the firmware to be updated.
· Exo driver wiper implementation changed from: ‘wipe_after_numer_of_samples:’ to ‘wipe interval:’

OMC-048_FW_0.01B1463_H0002.bin#####
Added ‘startup_time’ to config
It is now possible to define the ‘startup_time’ in the config. This gives more control over each specific sensor using the same driver.
The startup time defines the time in seconds for the power supply to be enabled prior to a measurement. It allows a sensor to ‘stabilize’ before the data is requested. The setting is optional and only relevant in case ‘supply_port_always_on: False’.

The example config below shows an analog port which has a 10 second “startup_time” after the power had been applied:# ----Sensor-Settings---- #
Analog_voltage:
- id: analog_voltage1
 port: 1
 supply_port: 2
 supply_port_always_on: False
 startup_time: 10
 sample_interval: "0,10,20,30,40,50 * * * *"
 min_in: 0
 max_in: 24000
 min_out: 0
 max_out: 24
 log_name: Power supply
 log_unit: V
 log_tag: VOLT1

The startup_time setting can also be used to overwrite defaults. For example the Manta driver maintains a default startup time of 20 seconds, the EXO maintains a default op 30 seconds. In case the config contains a new startup_time, the default for this specific sensor is overwritten.

Minor patches / fixes:
· The ysi-6-series parameter table is updated
· Fixed the problem of memory consumption while trying to load a decent size config.

#####OMC-048_FW_0.01B1406_H0002.bin#####

Minor patches / fixes:
- 	The gmx501 driver now supports GPS LAT and LON view on OMC-DOL. As with the navilock GPS the device needs to obtain a valid gps signal to append the data. Make sure the “response_timeout” is set adequately.
-	The navilock gps now appends tag_id data to all data items except for LAT/LON. A bug is fixed which caused the parameters not to be detected in case of a RMC message missing time and date data.
-	The omc048 should only be fitted with one GPS sensor, if multiple gps sensors are used the “Log_parameters” setting should be used to prevent dual ‘LAT and LON’ tags from the sensors.
-	The omc DOL data status codes now set and reset properly for all sensors. Data which is appended by a sensor which contains “” (empty data field) or “None” is now considered invalid and the invalid tag is set to this item.
-	The creation of a new data record was according to the current time for each individual data item. This caused the data from a single sensor to be split up over two records. The data from a single sensor is now appended on a single record, which also improves system speed.
-	The iridium driver now appends ‘empty’ (tag;data) data to the message in case of a timeout. This way it is possible to maintain a fixed position message if the scheduling is done correctly. This is at the cost of data reduction.

#####OMC-048_FW_0.01B1385_H0002.bin#####

Minor patches / fixes:
- 	The Iridium driver serial port initialisation changed to no flow control as default.

#####OMC-048_FW_0.01B1370_H0002.bin#####

Added generic serial driver
Via the generic_reference_tables.py it is now possible to easily create a standard driver for most common serial drivers according to the “start, separator, stop” format. A How-To-Use is provided in the generic_reference_tables.py file. The gmx501 and gmx500 drivers are provided for use and as an example on how to set-up a generic driver. Additional generic tables shall be added in the future.# ----Sensor-Settings---- #
generic_serial:
- id: gen0
 port: serial1
 reference_table: gmx500
 sample_interval: "0,10,20,30,40,50 * * * *"
 response_timeout: 60

Added Gil gmx501 serial driver
The gmx501 sensor driver is added. It is built on the concept of the generic driver, but it required additional functionality for the checksum calculation and the date & time update for the logger.
The sensor is configured as any other serial sensor with the additional setting to update the omc048 utc time automatically.# ----Sensor-Settings---- #
gmx_501:
- id: gen0
 port: serial1
 sample_interval: "* * * * *"
 response_timeout: 60
 utc_time_sync: True
 supply_port_always_on: True

Minor patches / fixes:
- 	The EXO table is updated with unique tag names.
-	The onboard sensor measurements routine is optimised in speed and to prevent the task from blocking other tasks in case of multiple tasks at the same interval.

#####OMC-048_FW_0.01B1320_H0002.bin#####

Added iridium modem
It is possible to transmit iridium modem data via the Iridium Edge modem. An iridium modem is configured via the config menu as well as the iridium.py file.

At first the hardware is defined; a serial port is chosen and an optional supply port for switchable power. The baudrate does not need to be configured, this shall be set automatically to 19k2.# ----Modem-Settings---- #
Iridium_modem:
 id: iridium_modem
 port: serial4
 supply_port: 4

Then, iridium settings must be defined in which ‘system_id’ can be changed to preserve data for the iridium message. If ‘system_id’ is not defined the ‘system_id’ name of the omc048 settings shall be used as iridium message header. The ‘transmit_interval’ is used to schedule transmission attempts.# ----Iridium-Settings---- #
Iridium:
- id: data_iridium
 system_id: ZZ
 transmit_interval: "0 0 * * *"

Iridium messages are stored to the data folder just like normal log files. The files are redirected to the data/iridium folder once transmitted or in case of failed attempts. The ‘Iridium_file’ task defines the interval in which a new iridium file is created (which shall be picked up for transmission by the Iridium driver, given above)# ----Data-log-settings---- #
Iridium_file:
- id: iridium
 create_interval: "55 59 * * *"

Sensors, unlike normal log outputs only add data to the iridium message (file) if defined by the dictionary in iridium.py. By setting the ‘sensor_data_print: True’ in the system settings, all measured sensor data is printed in the REPL. This data should be used to setup the dictionary of the iridium.py file. self.conversion_dict = {
 #Sensor TAG #Iridium TAG #Nr of decimals #Char clip (includes +/-/,)
 'VBAT' : ('V', 1, 4,),
 'TEMP' : ('T', 2, 5,),
 'HUM' : ('H', 3, 8,),
 'LAT' : ('L', None, None,),
 'LON' : ('l', None, None,),
 # 'user defined' : (None, None, None,),

 }

The original #Sensor TAG is used for identification, if present the converted data is appended to the iridium message. Also, the number of decimals can be set as well as a clip on the number of characters. If the data should be ‘as-is’ please define ‘None’. In case values exceed the range of the number of characters, the shall be clipped to the maximum or minimum depending on the value.

Below some examples of valid ranges, versus number of decimals:
-999 to 9999 	(0 decimals, clip to 4)
-99.9 to 999.9 	(1 decimals, clip to 5)
-9.99 to 99.99 	(2 decimals, clip to 5)

If ‘sensor_data_print: True’ is active the iridium message is printed prior to transmission. A message contains the ‘system_id’ at start, then a data/timestamp, after which the data appended by the sensors (via the dictionary filter). This should be used to validate if the conversion is made accordingly.

Iridium message example:
*ZZ;210222143455;T;23.77;H;44;V;3.1;L;51.89074;l;4.161869

WARNING: If sensors transmit data at a higher interval then the iridium file is created, identical data fields shall be appended to the message.
WARNING: If iridium files are created at a higher interval then the iridium transmission interval, only one iridium file shall be transmitted, the others repositioned to the data/iridium folder without being transmitted. As the file to transmit is not prioritized the user should make sure only one file is present for transmission.
WARNING: only 338 characters can be transmitted via iridium, once every three minutes. If the iridium file contains a message which exceeds the length, it is not transmitted! Is shall be replaced to the data/iridium folder.
WARNING: Iridium can be used parallel to the normal data log (ftp) routine. Beware that high output rate sensors are not picked up by the iridium dictionary as the will fil up the iridium message quickly!
WARNING: The iridium receiver is a line-of-sight device and should be positioned in an open area without obstacles. In case transmission attempts fail the date is not re-sent on a later interval as is done with FTP data.

Improved modem routine
Some diagnostics are added to the modem routine to provide more information in case of signal reception/sim/settings issues. The cellular provider, signal strength and used technology are presented via a syslog message on each transmission attempt. Also, various ‘abnormal’ modem responses are translated to syslog messages to provide better feedback at which stage the transmission fails. 2021-03-08 15:10:30 [FTP] INFO Onboard modem powered, power on delay 10 sec
2021-03-08 15:10:30 [SCHEDULER] INFO Sleep for 9.8 seconds
2021-03-08 15:10:40 [MODEM] INFO Registered to network, roaming
2021-03-08 15:10:40 [MODEM] INFO Technology: "GSM", provider: "NL KPN", signal strength: "-54 dBm"
2021-03-08 15:10:59 [FTP] INFO Starting transfer
2021-03-08 15:11:02 [FTP] INFO Transfer of data/OMC-045_Scrilo_049000000_210308_150243.txt completed
2021-03-08 15:11:02 [FTP] INFO Untransmitted data file detected: data/OMC-045_Scrilo_049000000_210308_150401.txt
2021-03-08 15:11:04 [FTP] INFO Transfer of data/OMC-045_Scrilo_049000000_210308_150401.txt completed
2021-03-08 15:11:04 [FTP] INFO Untransmitted data file detected: data/OMC-045_Scrilo_049000000_210308_150601.txt
2021-03-08 15:11:07 [FTP] INFO Transfer of data/OMC-045_Scrilo_049000000_210308_150601.txt completed
2021-03-08 15:11:07 [FTP] INFO Untransmitted data file detected: data/OMC-045_Scrilo_049000000_210308_150801.txt
2021-03-08 15:11:10 [FTP] INFO Transfer of data/OMC-045_Scrilo_049000000_210308_150801.txt completed
2021-03-08 15:11:10 [NTP] INFO NTP server check initiated
2021-03-08 15:11:11 [NTP] INFO Logger time deviation to NTP source > 2 second
2021-03-08 15:11:15 [NTP] INFO Logger time synchronised to NTP source
2021-03-08 15:11:15 [FTP] INFO Onboard modem ftp disconnected
2021-03-08 15:11:16 [FTP] INFO Onboard modem network disconnected

Via the config it is possible to set the onboard modem to GPS (2G) of LTE (4G) only or GPS (2G) + LTE (4G).# ----Modem-Settings---- #
Modem:
 id: onboard_modem
 port: modem
 sim_username:
 sim_password:
 apn: internet.be
 network_technology: GSM

Valid settings are: ‘GSM’, ‘LTE’ and ‘GSM + LTE’. Be aware that not all SIM cards support all network technologies.

Minor patches / fixes:
- 	The EXO table is updated with extra parameters.
-	The omc2900 output now transmits a ‘telegram’ start and end character. Also, an extra CR and LF are added as done by the OMC045
-	The modem routine encountered problems when roaming, routine had been improved.
-	While roaming some timeouts would trigger to early, adjusted to give more time to response.

#####OMC-048_FW_0.01B1268_H0002.bin#####

Added OMC-2900 serial output
By defining an output driver in the config file, it is possible to convert sensor data to an OMC-2900 output over a serial port. The description on how-to-use is provided in the OMC2900.py file located in the script/modules folder.

Minor patches / fixes:
- 	The EXO and ysi_6_series parameter tables are corrected on tag names/units.
-	The status indicator of the log format records is reworked to match the omc045III style.
-	In case a sensor is timed out a record is logged containing an invalid data status indication.

#####OMC-048_FW_0.01B1228_H0002.bin#####

Added NTP time synchro
The Time can now be synchronized via the NTP protocol. It can be enabled via ‘utc_time_sync’. And optionally the server and port can be provided by the user (defaults: europe.pool.ntp.org, port: 123)
The NTP server is checked after each scheduled FTP task if enabled. After the transmission of the FTP files the NTP server is requested. After a valid NTP package was received the time and date is corrected (taking the loggers UTC offset into account!). To prevent numerous requests to the NTP server a 4 hour timeout was introduces. This prevents unwanted and unnecessary requests to the server.# ----FTP-Settings---- #
Ftp:
- id: data_ftp
 utc_time_sync: True
 utc_time_server: nl.pool.ntp.org
 utc_time_server_port: 123

During startup:2020-11-27 15:54:22 [FTP] INFO FTP configuration detected: ftp.omc-data-online.com
2020-11-27 15:54:22 [NTP] INFO Automatic NTP time synchronisation enabled on data_ftp
2020-11-27 15:54:22 [NTP] INFO address: nl.pool.ntp.org port: 123

During normal operation:2020-11-27 16:00:48 [NTP] INFO NTP server check initiated
2020-11-27 16:00:48 [NTP] INFO Logger time deviation to NTP source > 2 second
2020-11-27 17:00:49 [NTP] INFO Logger time synchronised to NTP source

or in case of earlier NTP check:2020-11-27 17:10:47 [NTP] INFO NTP server check skipped, last check was less then 4 hours ago

Added NMEA PTID driver:
The nmea PTID driver is a static driver designed for the Orinoco solo tide sensor. The driver is NMEA based and requires the static input format as:

$PTID,005,10072006,092114,0.08,M,00,12.36,V,1023,hPa,x*19

The parameters which are obtained are: Depth, Status, Battery voltage and Barometric pressure.
This driver is statically created due to the absence of a ‘generic nmea’ driver at this moment.

Note: The sensor transmits data at the interval of 2 minutes. It is important to make sure the logger is awake when the sample is transmitted! Therefore the sample interval should be set to 2 minutes and the timeout to more then 2 minutes! Also make note that the startup procedure can be ‘delayed’ by up to 2 minutes due to the slow data response of the sensor! See example below:nmea_ptid:
- id: ptid0
 port: serial1
 mode: RS232
 baudrate: 9600
 sample_interval: "0 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58 * * *"
 response_timeout: 125

Changes navilock_md6.py:
A minor change in the collection of the nmea data transmitted by the navilock sensor. In case of slower data outputs the nmea sentences were parsed with prior to last recent data.

Software patches / fixes:
- Updated to micropython 1.13
- read_line.py refactored using async stream, due to harfault uart serial problems. The update() now returns the list of sentences, the get() is removed
- All Sensor drivers refactored to comply to new read_line.
- PAR parameters added to the EXO table, these were somehow forgotten.
- ATparser/modem refactored to work with streamreader
- Errors on corrupt transmitted directory or unreadable files now delete the ‘problematic files’ instead of trying to re-send.
- In driver_manager: In case a sensor times-out the power (if assigned) is force toggled with a off-time given in the sensor driver (default 5 sec).
- Some minor changes in the syslog levels to prevent spamming of data or unnecessary messages to the user (such as ‘wake up message’, and ‘usb_wake’)
- In navilock: The datetime sync (if enabled) is imeadeately executed afther the receival of the RMC message, this prevents the possibility the time could be synced to an ‘older’ RMC message. In case a logger lost its time the datetime resets to 2000-1-1-1, which was also the date the navilock compared to the first cycle. This caused the datetime not to be updated for 4 hours, changed the starting date to the not-reset date of the logger.
- Ysi-6-series: Fix on the temperature bug, multiple spaces as devider are now possible and does not cause the sensor to reject the data message.
- Added the dual_protocol() function to USB which can change between REPL only and MSC+REPL. This is later to be used for the usb/sd problem fix. This also works for connecting and reconnecting usb during sleep/wake
- The scheduler sometime executed tasks to early. The cron interval is now checked prior to executing the task. If the cront interval is not yet due it shall go to sleep again for the remainder of the time.

#####OMC-048_FW_0.01B1038_H0002.bin#####

Added navilock_md6 GPS time synchronisation:
 The GPS time can be automatically synced on each valid sample that is received. It is enabled/disabled via 'utc_time_sync:' which is driver specific (default is disabled). info messages are reported if the time is synced.
Gps:
- id: GPS_A
 utc_time_sync: True

Added UTC offset in configuration:
 The system tab can now contain 'utc_time_offset_hours:' and 'utc_time_offset_minutes:' (zero by default). Positive or negative offsets are given via +x (or x) and -x.# ----System---- #
Omc048:
 utc_time_offset_hours: +1
 utc_time_offset_minutes: -30

EXO driver wiper:
EXO driver wiper implementation changed from 'wipe_after_number_of_samples:' to 'samples_per_wipe:'. '0' means no wipes, '1' means wipe each sample, '10' means wipe first sample, dont wipe the next 9 samples. etc.
The wipe is executed before a measurement(sample), this shall delay the data request with the wipe time (around 1 min)

#####OMC-048_FW_0.01B990_H0002.bin#####

Added Usb_wake:
Usb wake is used to periodically wake up the USB interface to check if a usb connection is active.
If the usb is found the log file is stopped prior and started after usb negotiations, this reduces the chance of corrupt file detection by windows.

In config.txt:Usb_wake:
- id: usb_wakeup
 wake_interval: "0,10,20,30,40,50 * * * *"

Added the detection of USB wake, FTP and Data interval on start-up info messaging:
In repl:2020-10-29 12:22:39 [LOGGER_MANAGER] INFO Data file create interval detected'
2020-10-29 12:22:39 [FTP] INFO FTP configuration detected: ftp.omc-data-online.com'
2020-10-29 12:22:39 [USB_WAKE] INFO Usb wake interval configuration detected'

